Emerging memories: resistive switching mechanisms and current status.
نویسندگان
چکیده
The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO(2), Cr(2)O(3), FeO(x) and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO(3), Pb(Zr(x) Ti(1-x))O(3), BiFeO(3) and Pr(x)Ca(1-x)MnO(3); (iii) large band gap high-k dielectrics, e.g. Al(2)O(3) and Gd(2)O(3); (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In(2)Se(3) and In(2)Te(3). Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.
منابع مشابه
Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling
With the explosive growth of digital data in the era of the Internet of Things (IoT), fast and scalable memory technologies are being researched for data storage and data-driven computation. Among the emerging memories, resistive switching memory (RRAM) raises strong interest due to its high speed, high density as a result of its simple two-terminal structure, and low cost of fabrication. The s...
متن کاملAnalysis on Resistive Random Access Memory (RRAM) 1S1R Array
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Increasing dependence of the functionality and performance of computing system on the characteristics of the memory subsystem calls for further study on various memory technologies. Conventional memory technologies, such as SRAM, DRAM and FLASH, suffer from the formidable device scaling challenges, which makes researchers pay more attenti...
متن کاملCompact Modeling Solutions for Oxide-Based Resistive Switching Memories (OxRAM)
Emerging non-volatile memories based on resistive switching mechanisms attract intense R&D efforts from both academia and industry. Oxide-based Resistive Random Acces Memories (OxRAM) gather noteworthy performances, such as fast write/read speed, low power and high endurance outperforming therefore conventional Flash memories. To fully explore new design concepts such as distributed memory in l...
متن کاملResistive Random Access Memory (ReRAM): A Metal Oxide Memory Cell
We review the recent progress in the ReRAM technology, one of the most promising emerging nonvolatile memories, in which both electronic and electrochemical effects play important roles in the nonvolatile functionalities. We first provide a brief historical overview of the research in this field. We also provide a technological overview and the epoch-making achievements, followed by an account ...
متن کاملA behavioral model of unipolar resistive RAMs and its application to HSPICE integration
Resistive RAMs (ReRAMs), where the resistance is changed by voltage and current biases, have extensively been studied to develop high-speed and large-capacity nonvolatile memories as well as functional nonvolatile memories. ReRAMs are so far intended for use as alternatives to contemporary flash memories, but the applications are not limited to Boolean alternatives. Although physical mechanisms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Reports on progress in physics. Physical Society
دوره 75 7 شماره
صفحات -
تاریخ انتشار 2012